The Math of Linear Regression:
Reintroducing an Old Acquaintance

Mathematics for Political Scientists

Carlos Gueiros
Fall 2025

University of Mannheim



Simple Linear Regression (Scalar Form)

For observations indexed by i = 1,..., n, consider the model

Yi = Bo+ fiXi + ui.

Y; is the dependent variable; X; is the independent variable; u; is the disturbance.

The least squares estimates (30,31) minimize the sum of squared residuals

n

S(Bo, B1) = D_(Yi—Po— BuXi).

i=1

e First-order conditions:

Z(YI‘_BO_BIX/‘):Q ZX/(Yi—ﬂo—ﬁlxi)Zf).

i=1 i=1

Closed-form solution:
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Multiple Linear Regression (Scalar Form)

With k regressors, the model for each observation i =1,...,nis

Yi = Bo+ f1Xan + B2 Xiz + -+ - + BuXik + ui.

e The least squares estimates o, . .., 3x minimize

n

S5(Bo,---sBk) = Z(YI —Bo—P1Xip — - — /BkXik)z-
i=1
e First-order conditions (one equation per parameter):

n

Z(Y/ — Bo — B1Xin — -+ — BiXix) =0,
P

ZXU(YI*BO*/&XH*"‘*5kXik) =0, j=1,... k.
i=1
e These k + 1 linear equations motivate the Matrix Form, where the system is written compactly
and solved using linear algebra.
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The True Model (Matrix Form)

Our statistical model will essentially look something like the following:

Y1 1 X X -+ Xa & €1
Ya 1 X2 Xo2 -0 Xiz A €2
Y, 1 Xin Xon -+ Xin i €n
—— /Bk ——
nx1 nx(k+1) == nx1
(k+1)x1

a/2a



True Model (Matrix Form)

This can be rewritten more simply as:
y =XB +¢ (1)

This is assumed to be an accurate reflection of the real world.

The model has a systematic component (X3) and a stochastic component (g). Our goal is to obtain
estimates of the population parameters in the vector .
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Criteria for Estimates

Our estimates of the population parameters are denoted by B. The criterion we use is to find the

estimator 3 that minimizes the sum of squared residuals.

The vector of residuals is
e = y—Xp. (2

Note: Carefully distinguish between disturbances e (unobserved) and residuals e (observed). In general,

€+ e.
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Sum of Squared Residuals

The sum of squared residuals (RSS) is €’e.

€1
€2 2 2 2
[e1 e --- e,,] ) = [el+52+"'+en].
—/_/ .
1xn : 1x1
€n
——
nx1
It follows that
ee=(y—XB)(y—XB) (4)
=yy-BXy—yXB+BXXpB
=y'y—28X'y +B'X' X3, (1)

where we used that the transpose of a scalar equals itself, so (y'X3) = 5'Xy.
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Differentiating the RSS

To find the 3 that minimizes €’e, differentiate (4) with respect to B:

1 = —2X'y + 2X'Xj3 = 0. 5
o5 y B (5)

To check this is a minimum, differentiate again with respect to 3

P(e'e) _
oBop

which is positive definite when X has full column rank.

X'X,
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Normal Equations

From (5) we obtain the normal equations:

(X'X)B = X'y. (10)

Two immediate facts about X’X:

e It is always square (k X k).

e It is symmetric.
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Closed-Form Estimator

Since X'X and X'y are known from the data while 3 is unknown, if (X’'X)~! exists, premultiply both
sides of (10) by the inverse:

(X'X)'X'X)B = (X' X) ' Xy. (11)
Because (X'X)™H(X'X) = I, this gives

B = (X'X)'X'y. (12)

Up to this point, no stochastic assumptions were required. The OLS estimators are linear functions of
the observed data (X, y).
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Model and Assumptions

Model (definition): y = X8 + ¢, with 8 unknown.

What requires assumptions: the stochastic behavior of £ (and how rows of (X, y) are generated).

We work conditional on X: probabilities and expectations are taken given the realized design matrix X.
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e X is treated as given (nonstochastic) for estimation and inference; if X is random, we condition
on its realization.

e Full column rank: rank(X) = k with kK < n. Then X’X is invertible and the normal equations
have a unique solution

B=(X'X)"1X'y.
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Zero Conditional Mean (Exogeneity)

Efe | X] = 0.

Interpretations:

e Given X, the disturbance has mean zero for every observation: regressors carry no information
about the mean of ¢.

e No omitted component correlated with any column of X.

Consequence: E[3 | X] = 3 (unbiasedness).

13/24



Error Covariance: Spherical (CLM)

Elee’ | X] = 0?1,
This encodes homoskedasticity and no autocorrelation:
E(e? | X)=0® foralli,  E(eigj| X)=0 (i #J).

Consequences:
Var(B | X) =o*(X'X)", 6% =
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Error Covariance: General Case

E[eg’ | X] =Q (unknown, p.s.d.).

o If E[e | X] =0, OLS remains unbiased.

e Variance changes:
Var(B | X) = (X'X)'X QX (X' X)" "

o Heteroskedasticity-robust SEs (White):

Var(B) = (X'X) 71X (ee’) X (X'X) 7.
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Normality (for Tests)

For exact small-sample t/F tests it is convenient to assume
e~ N(0,6°I,) (given X).

This is not needed for unbiasedness or BLUE; with large n, asymptotic normality of /3 yields
approximate t/F inference via the CLT.
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Classical Linear Model (CLM) Assumptions

Scalar notation Matrix notation

1. E(ei) = 0 for each i. 1. E(e) =0.

2. E(eigj) =0 for i # j; E(e?) = o°. 2. E(ee') = d?l,.

3. Xa,..., X treated as fixed. 3. X treated as nonstochastic (work conditional
on X).

4. No exact linear relation among the X's. 4. rank(X) = k < n (full column rank).

5. For tests: ; ~ N(0,0?). 5. For tests: & ~ N(0,0%1,).
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What Each Assumption Gives Us

Assumption Implication
rank(X) = k Uniqueness of 3.
Ele | X] =0 E[3 | X] = 8 (unbiased).

Elee’ | X] = o?1,
Normality (or CLT)

BLUE; Var(3 | X) = o2(X'X)™™.

Exact (or asymptotic) t/F inference.
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Gauss—Markov (BLUE)

Under linearity in parameters, full column rank, E[¢ | X] = 0, and E[e¢’ | X] = o2/,
B=(X'X)"'X'y is Best Linear Unbiased (BLUE).

“Best”: minimum variance among all linear unbiased estimators.
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Appendix



Matrix Derivative Rules Used

Let a, b be K x 1 vectors and A a symmetric K x K matrix. We use:

oa'b oba O b'Ab
b b ap AP
In our OLS derivation:
51t 9(—2 "/X/ TRVIAVAY R
OBXY _xty, (7’?}/):7%’% 9FXXB _ ox'x B.
op ap o

These identities produce the gradient Vz(e'e) = —2X"y + 2X' X 3.



Linear Independence

Let {x1,...,x } be n x 1 column vectors. Definition: {x1,...,x} is linearly independent iff
axi+ - tax=0=a=-=a =0.
Equivalent: no vector in the set can be written as a linear combination of the others.

1 3
Example. [2 6| has dependent columns (second is 3x the first).
0 0



Rank of a Matrix

For A € R"*™ with columns ay, ..., am:
rank(A) = max{number of linearly independent columns of A} = dimC(A).
Basic facts:

e rank(A) < min(n, m), and rank(A) = rank(A’).
e rank(A) = m = A has full column rank.

e If Ais k X k and rank(A) = k, then A is invertible.



Why Rank Matters for OLS

Let X =[x1 -+ x«] € R™<k,

rank(X) = k (columns independent) = X’X is k x k and invertible.
e Reason: for any nonzero z, 2’ X'Xz = || Xz||* > 0 = X'X is positive definite.

e Then the normal equations have a unique solution:

X'X)B=X'y = B=XX)"XYy.

If rank(X) < k: perfect multicollinearity = X’X singular, coefficients not identified.
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