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Simple Linear Regression (Scalar Form)

For observations indexed by i = 1, . . . , n, consider the model

Yi = β0 + β1Xi + ui .

• Yi is the dependent variable; Xi is the independent variable; ui is the disturbance.

• The least squares estimates (β̂0, β̂1) minimize the sum of squared residuals

S(β0, β1) =
n∑

i=1

(
Yi − β0 − β1Xi

)2
.

• First-order conditions:
n∑

i=1

(
Yi − β0 − β1Xi

)
= 0,

n∑
i=1

Xi

(
Yi − β0 − β1Xi

)
= 0.

• Closed-form solution:

β̂1 =

∑n
i=1(Xi − X̄ )(Yi − Ȳ )∑n

i=1(Xi − X̄ )2
, β̂0 = Ȳ − β̂1 X̄ .
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Multiple Linear Regression (Scalar Form)

With k regressors, the model for each observation i = 1, . . . , n is

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βkXik + ui .

• The least squares estimates β̂0, . . . , β̂k minimize

S(β0, . . . , βk) =
n∑

i=1

(
Yi − β0 − β1Xi1 − · · · − βkXik

)2
.

• First-order conditions (one equation per parameter):
n∑

i=1

(
Yi − β0 − β1Xi1 − · · · − βkXik

)
= 0,

n∑
i=1

Xij

(
Yi − β0 − β1Xi1 − · · · − βkXik

)
= 0, j = 1, . . . , k.

• These k + 1 linear equations motivate the Matrix Form, where the system is written compactly
and solved using linear algebra.
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The True Model (Matrix Form)

Our statistical model will essentially look something like the following:


Y1

Y2

...
Yn


︸ ︷︷ ︸
n × 1

=


1 X11 X21 · · · Xk1

1 X12 X22 · · · Xk2
...

...
...

. . .
...

1 X1n X2n · · · Xkn


︸ ︷︷ ︸

n × (k + 1)



β0

β1

β2

...
βk


︸ ︷︷ ︸

(k + 1)× 1

+


ε1

ε2

...
εn


︸ ︷︷ ︸
n × 1
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The True Model (Matrix Form)

This can be rewritten more simply as:
y = Xβ + ε (1)

This is assumed to be an accurate reflection of the real world.

The model has a systematic component (Xβ) and a stochastic component (ε). Our goal is to obtain
estimates of the population parameters in the vector β.
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Criteria for Estimates

Our estimates of the population parameters are denoted by β̂. The criterion we use is to find the
estimator β̂ that minimizes the sum of squared residuals.

The vector of residuals is
e = y − X β̂. (2)

Note: Carefully distinguish between disturbances ε (unobserved) and residuals e (observed). In general,
ε ̸= e.
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Sum of Squared Residuals

The sum of squared residuals (RSS) is e′e.

[ e1 e2 · · · en ]︸ ︷︷ ︸
1×n


e1

e2

...
en


︸ ︷︷ ︸
n×1

= [ e2
1 + e2

2 + · · ·+ e2
n ]︸ ︷︷ ︸

1×1

.

It follows that

e′e = ( y − X β̂ )′( y − X β̂ ) (4)

= y ′y − β̂′X ′y − y ′X β̂ + β̂′X ′X β̂

= y ′y − 2 β̂′X ′y + β̂′X ′X β̂, (1)

where we used that the transpose of a scalar equals itself, so (y ′X β̂)′ = β̂′X ′y .
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Differentiating the RSS

To find the β̂ that minimizes e′e, differentiate (4) with respect to β̂:

∂(e′e)

∂β̂
= − 2X ′y + 2X ′X β̂ = 0. (5)

To check this is a minimum, differentiate again with respect to β̂:

∂2(e′e)

∂β̂ ∂β̂′
= 2X ′X ,

which is positive definite when X has full column rank.
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Normal Equations

From (5) we obtain the normal equations:

(X ′X ) β̂ = X ′y . (10)

Two immediate facts about X ′X :

• It is always square (k × k).

• It is symmetric.
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Closed-Form Estimator

Since X ′X and X ′y are known from the data while β̂ is unknown, if (X ′X )−1 exists, premultiply both
sides of (10) by the inverse:

(X ′X )−1(X ′X ) β̂ = (X ′X )−1X ′y . (11)

Because (X ′X )−1(X ′X ) = Ik , this gives

β̂ = (X ′X )−1X ′y . (12)

Up to this point, no stochastic assumptions were required. The OLS estimators are linear functions of
the observed data (X , y).
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Model and Assumptions

Model (definition): y = Xβ + ε, with β unknown.

What requires assumptions: the stochastic behavior of ε (and how rows of (X , y) are generated).

We work conditional on X : probabilities and expectations are taken given the realized design matrix X .
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Design Matrix X

• X is treated as given (nonstochastic) for estimation and inference; if X is random, we condition
on its realization.

• Full column rank: rank(X ) = k with k < n. Then X ′X is invertible and the normal equations
have a unique solution

β̂ = (X ′X )−1X ′y .
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Zero Conditional Mean (Exogeneity)

E[ε | X ] = 0.

Interpretations:

• Given X , the disturbance has mean zero for every observation: regressors carry no information
about the mean of ε.

• No omitted component correlated with any column of X .

Consequence: E[β̂ | X ] = β (unbiasedness).
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Error Covariance: Spherical (CLM)

E[εε′ | X ] = σ2In.

This encodes homoskedasticity and no autocorrelation:

E(ε2
i | X ) = σ2 for all i , E(εiεj | X ) = 0 (i ̸= j).

Consequences:

Var(β̂ | X ) = σ2(X ′X )−1, σ̂2 =
e′e

n − k
.
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Error Covariance: General Case

E[εε′ | X ] = Ω (unknown, p.s.d.).

• If E[ε | X ] = 0, OLS remains unbiased.

• Variance changes:
Var(β̂ | X ) = (X ′X )−1X ′ ΩX (X ′X )−1.

• Heteroskedasticity-robust SEs (White):

V̂ar(β̂) = (X ′X )−1X ′ (ee′)X (X ′X )−1.
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Normality (for Tests)

For exact small-sample t/F tests it is convenient to assume

ε ∼ N (0, σ2In) (given X ).

This is not needed for unbiasedness or BLUE; with large n, asymptotic normality of β̂ yields
approximate t/F inference via the CLT.
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Classical Linear Model (CLM) Assumptions

Scalar notation Matrix notation

1. E(εi ) = 0 for each i . 1. E(ε) = 0.

2. E(εiεj) = 0 for i ̸= j ; E(ε2
i ) = σ2. 2. E(εε′) = σ2In.

3. X2, . . . ,Xk treated as fixed. 3. X treated as nonstochastic (work conditional
on X ).

4. No exact linear relation among the X ’s. 4. rank(X ) = k < n (full column rank).

5. For tests: εi ∼ N (0, σ2). 5. For tests: ε ∼ N (0, σ2In).
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What Each Assumption Gives Us

Assumption Implication
rank(X ) = k Uniqueness of β̂.

E[ε | X ] = 0 E[β̂ | X ] = β (unbiased).

E[εε′ | X ] = σ2In BLUE; Var(β̂ | X ) = σ2(X ′X )−1.

Normality (or CLT) Exact (or asymptotic) t/F inference.
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Gauss–Markov (BLUE)

Under linearity in parameters, full column rank, E[ε | X ] = 0, and E[εε′ | X ] = σ2In:

β̂ = (X ′X )−1X ′y is Best Linear Unbiased (BLUE).

“Best”: minimum variance among all linear unbiased estimators.
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Appendix



Matrix Derivative Rules Used

Let a, b be K × 1 vectors and A a symmetric K × K matrix. We use:

∂ a′b

∂b
= a,

∂ b′a

∂b
= a,

∂ b′Ab

∂b
= 2Ab.

In our OLS derivation:

∂ β̂′X ′y

∂β̂
= X ′y ,

∂
(
− 2 β̂′X ′y

)
∂β̂

= −2X ′y ,
∂ β̂′X ′X β̂

∂β̂
= 2X ′X β̂.

These identities produce the gradient ∇β̂(e
′e) = −2X ′y + 2X ′X β̂.



Linear Independence

Let {x1, . . . , xr} be n × 1 column vectors. Definition: {x1, . . . , xr} is linearly independent iff

α1x1 + · · ·+ αrxr = 0 ⇒ α1 = · · · = αr = 0.

Equivalent: no vector in the set can be written as a linear combination of the others.

Example.

1 3
2 6
0 0

 has dependent columns (second is 3× the first).



Rank of a Matrix

For A ∈ Rn×m with columns a1, . . . , am:

rank(A) = max{number of linearly independent columns of A} = dim C(A).

Basic facts:

• rank(A) ≤ min(n,m), and rank(A) = rank(A′).

• rank(A) = m ⇒ A has full column rank.

• If A is k × k and rank(A) = k, then A is invertible.



Why Rank Matters for OLS

Let X = [x1 · · · xk ] ∈ Rn×k .

• rank(X ) = k (columns independent) ⇒ X ′X is k × k and invertible.

• Reason: for any nonzero z , z ′X ′Xz = ∥Xz∥2 > 0 ⇒ X ′X is positive definite.

• Then the normal equations have a unique solution:

(X ′X )β̂ = X ′y ⇒ β̂ = (X ′X )−1X ′y .

• If rank(X ) < k: perfect multicollinearity ⇒ X ′X singular, coefficients not identified.
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